Space-based, terrestrial technologies and resilience towards a sustainable city : an academic point of view

Youssef DIAB



Professor of Urban Planning University Paris Est Scientific director of EIVP

### Pole of research and higher education (PRES)

Universities, «*Grandes Écoles*» and research institutes: A driving force on interdisciplinary

PARIS CONCITÉ DESCARTES CRÉTEIL

issues



### **Université Paris-Est – Key figures**

20 universities, "grandes écoles", research institutes and competitiveness cluster members

More than 100 research laboratories and programs

50 000 students

1 400 doctoral candidates including 50 % international doctoral candidates

2 000 academics and researchers

**500** engineers and technicians

6 doctoral schools

**100** active international partnership agreements



#### 2 main campuses and 2 focus areas



### Rationale

The context : New technologies, new models, complexity, resilience

Space based technologies : examples for UP

The concept of 'Urban Engineering'

Examples

Cross fertilisation

### Autolib – self-service electric cars : not a car sharing



Designers Associés & High-Graph Architecture

Source : Ville de Paris

Hammarby Sjostäd, Stockholm

影静美非

-

13 R 12



## **Risk and resilience**

- Hazard and vulnerability (colloque Risque et GC 2000, Unesco) Uncertainty on the behavior of materials, on the conditions of their implementation, their durability; uncertainty on the geologic, hydraulic, marine environment; and on the extreme conditions of operation of the works.

- Law Barnier (1995) and codes (earthquakes et Prevention plans)

- Human sciences : Research on risk De Vanssay (Kobé earthquake 1995 remake of Canto 1923) *Futuribles* 1997 : *Responsables, images...* 

The price which the society is ready to pay so that the future generations live in a better protected environment : legal system to relieve the consciousnesses (Czitorm)



#### A multidisciplinary concept ...



Lhomme et al., 2010

### **Evaluation of Urban Resilience**

Urban resilience = operating in a recovering way and degraded mode



Pertinent examples of the use of Space based technologies for resilience and disaster management

#### Densité du bâti de Kenitra et occupation du sol



QUARTIER EUROPEEN DENSE - PISTES

HABITAT PAVILLONAIRE

DOUARS

Très dense Qued Sebou Low : 0

OUED SEBOU



#### Portail d'accès aux produits du Service de Cartographie Rapide Portal to Rapid Mapping Service's products

UNIVERSITE DE STRASBOURG





HIR

1 000 N

Safer





- ---- Limite Flandre-Wallonie
- ----- Limite linguistique français-allemand

#### ÉQUIPEMENTS PRINCIPAUX

- 🔶 Aéroport
- 🖛 🛛 Circuit automobile

Sources des images: MNS SRTM, 2000, NASA Landsat-7 ETM+ © ESA, 2000, di Aster, 2001

Cartographie: E. NYAMINANI, SURFACES, UL







10.00

6%.

#### Genesis of (GU) 1987-2000

- Urban research : for a long time word defining a set of actions together of social sciences (JC. Deutsch)

*Consequences: techniques are plasters thinking so-so of wounds caused by policies ...* 

- Engineering sciences (CE): predictive numeric models often little applied in the urban areas

Gap between the stakes in cities: a technico-economic management of the urban services.

Birth of the 'GU' Dupuy + Martinand +(INGUL)



# Sustainability and GU

#### 7 millions inhabitants

- Networks are always important but services with different networks especially short and small grids
- Quality of life and evolution of lifestyles
- New concepts related to the environment : density, Green gaz, Green buildings, short circuits, smart grids and cities.....
- Connected cities
- Sprawled (spread) cities and shrinked cities
- technology and innovation

 Problems : Researches remain disciplinary in spite of attempts
 GU might be the solution

## Examples

Informal settlments

Density versus water management in city

 Climate change and Urban Heating Island (UHI) Heat wave

#### Legend

Existing Roads Green Open Space Mixed Open Space Cemeteries 0 Schools 0 Health Centers Mosques Monuments Fault Lines Fault Line Perpendiculars **Open Space Clusters** School Clusters Monument Clusters

¢,



## Paris 1910





## **PICARD** report

- 1910 : In Paris, the maximal flow is considered in approximately 2400 m3/sec; the measures which were made were able to be made only for the diminution.
- In Mantes-la-Jolie, the maximal flow was measured by gauging; it is 3 300 m3/sec
- 4 billions of m3 passed through Paris.
- Flow averages in the entry of Paris 328 m3/sec (Alforville) brought out in approximately 438 m3/sec to Poissy.
- The diminution lasts approximately 35 days.
- The diverse damages esteemed for the department of the Seine amount to 7 and a half billion francs.

## Solutions

- Absorbent wells and Turfing (infiltration)
- Reservoirs and reafforestation (4000 to 50000 reservoirs from 20 to 25 000 m3 of capacity
- Diversions in the upstream towards the approval of Paris
- The most popular solution under various form Ship canal (*Grand Paris before the hour*)

#### Master plan of rainning water management

#### usage arrosage (jardins privés)



#### **Raining water management**



#### HABITER LE FLEUVE



## Resilience, technology and Urban Engineering

- Indicators
- Sustainability
- Scales

Systemic approaches
Context (soil, informal...)
Systemic approaches
Modeling and project management
Data protocol and management